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Abstract
We extend the definition of generalized parity P, charge-conjugation C
and time-reversal T operators to nondiagonalizable pseudo-Hermitian
Hamiltonians, and use these generalized operators to describe the full set
of symmetries of a pseudo-Hermitian Hamiltonian according to a fourfold
classification. In particular, we show that T P and CT P are the generators of
the P-antiunitary symmetries; moreover, a necessary and sufficient condition
is provided for a pseudo-Hermitian Hamiltonian H to admit a P-reflecting
symmetry which generates the P-pseudounitary and the P-pseudoantiunitary
symmetries. Finally, a physical example is considered and some hints on the
P-unitary evolution of a physical system are also given.

PACS numbers: 11.30.Er, 03.65.Ca, 03.65.Fd

1. Introduction

The studies on the pseudo-Hermitian operators, i.e., those operators which satisfy

ηHη−1 = H † (1)

with a non-unique η = η†, have recently developed along two seemingly uncorrelated lines.
On the one hand, starting from a stimulating paper by Bender et al [1] on the class of

PT -symmetric Hamiltonians

Hν = P 2 + x2(ix)ν ν � 0

it has been proved, with a growing level of generalization [2–6] that one can associate with any
pseudo-Hermitian Hamiltonian with a discrete spectrum a triple of operators P, C and T (also
called, respectively, generalized parity, charge-conjugation and generalized time-reversal
operators) with many interesting properties: among them, the possibility of obtaining (if any)
a positive definite inner product.
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On the other hand, some interest has been devoted to the study of the η-unitary operators,
i.e., those operators U which satisfy

U †ηU = η (2)

(with η = η†), and of their spectrum [7, 8]. This concept arises in a very natural way in
connection with the pseudo-Hermiticity property, in the sense that for any η-pseudo-Hermitian
Hamiltonian H,U = eiH is trivially η-unitary.

In this context, we intend to extend the definition of generalized parity, charge-conjugation
and generalized time-reversal operators to the class of nondiagonalizable pseudo-Hermitian
Hamiltonians, which can sometimes occur in physics (for instance, they can be obtained from
the diagonalizable ones for some critical parameter values).

At the same time, these generalized operators will also be used in order to describe the full
set of symmetries of a pseudo-Hermitian Hamiltonian (according to a fourfold classification),
proving that a very deep connection exists between the two topics above.

In order to achieve this twofold goal, we premise in section 2 a proposition which
provides a necessary and sufficient condition for a non-Hermitian operator with discrete
spectrum to admit a linear, involutory symmetry. Next, we define in section 3 two families
of generalized parity and charge-conjugation operators {Pσ } and {Cσ }, respectively, and a
(antilinear) generalized time-reversal operator T associated with a nondiagonalizable pseudo-
Hermitian Hamiltonian H, showing that H is Pσ -pseudo-Hermitian, and that Cσ , T Pσ and
CσT Pσ ′ are involutory symmetries of H.

In section 4 we begin the study of the indefinite inner product spaces (actually, Krein
spaces) that can be obtained by considering a new (possibly indefinite) inner product in
our Hilbert space. In section 5 we first recall a previous, exhaustive classification of the
symmetries S of Krein spaces [9], which brings into consideration the P-pseudounitary, P-
antiunitary and P-pseudoantiunitary operators, besides the P-unitary ones. In particular, we
consider the subset SH of the elements of S which commute with H, and show that the P-
antiunitary symmetries, both in S and in SH , can be generated by some of the generalized
operators previously introduced, namely T P and CT P . Moreover, a necessary and sufficient
condition is provided for a (possibly) nondiagonalizable pseudo-Hermitian Hamiltonian H to
admit a P-reflecting symmetry which generates the P-pseudounitary and P-pseudoantiunitary
symmetries in SH , and a possible physical meaning of such an operator is suggested.

Finally, in section 6 a physical model is considered which allows us to illustrate all the
above results (and some hints on the P-unitary evolution of a physical system are also given),
whereas section 7 contains some concluding remarks.

2. Non-Hermitian operators and linear involutory symmetries

Following [10, 11], we consider here only linear operators H acting in a separable Hilbert
space H and having a discrete spectrum. Moreover, throughout this paper we shall assume
that all the eigenvalues En of H have finite algebraic multiplicity gn and that there is a basis
of H in which H is block diagonal with finite-dimensional diagonal blocks. Then, a complete
biorthonormal basis E = {|ψn, a, i〉, |φn, a, i〉} exists such that the operator H can be written
in the following form [10]:

H =
∑

n

dn∑
a=1

En

pn,a∑
i=1

|ψn, a, i〉〈φn, a, i| +
pn,a−1∑

i=1

|ψn, a, i〉〈φn, a, i + 1|
 (3)
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where dn denotes the geometric multiplicity (i.e., the degree of degeneracy) of En, a is a
degeneracy label, pn,a represents the dimension of the simple Jordan block Ja(En) associated
with the labels n and a (hence,

∑dn

a=1 pn,a = gn).
|ψn, a, 1〉 (respectively, |φn, a, pn,a〉) is an eigenvector of H (respectively, H †):

H |ψn, a, 1〉 = En|ψn, a, 1〉 H †|φn, a, pn,a〉 = E∗
n|φn, a, pn,a〉 (4)

and the following relations hold:

H |ψn, a, i〉 = En|ψn, a, i〉 + |ψn, a, i − 1〉 i �= 1 (5)

H †|φn, a, i〉 = E∗
n|φn, a, i〉 + |φn, a, i + 1〉 i �= pn,a. (6)

The elements of the biorthonormal basis obey the usual relations

〈ψm, a, i|φn, b, j 〉 = δmnδabδij (7)∑
n

dn∑
a=1

pn,a∑
i=1

|ψn, a, i〉〈φn, a, i| =
∑

n

dn∑
a=1

pn,a∑
i=1

|φn, a, i〉〈ψn, a, i| = 1. (8)

Let us now prove a necessary and sufficient condition for a non-Hermitian Hamiltonian
to admit a linear involutory symmetry (we recall that a linear operator C is called involutory
whenever C2 = 1).

Proposition 1. Let H be a linear operator with discrete spectrum. Then an involutory (non-
trivial) linear operator C exists such that [H,C] = 0, if and only if H admits at least two
linearly independent eigenvectors.

Proof. Let us suppose that a non-trivial involutory operator C exists such that [H,C] = 0 and
that H admits only one eigenvector, namely |1〉

H |1〉 = E|1〉. (9)

Then, a basis {|i} exists in which

H |i〉 = E|i〉 + |i − 1〉 i �= 1. (10)

Multiplying the left-hand side of equation (9) by C, and recalling that [H,C] = 0 and C2 = 1,
one easily obtains

C|1〉 = ε|1〉
where ε = ±1. In the same manner, from equation (10) (with i = 2), it follows that

HC|2〉 = EC|2〉 + ε|1〉 (11)

and, linearly combining equations (11) and (10) (with i = 2),

H(εC − 1)|2〉 = E(εC − 1)|2〉
i.e., (εC − 1)|2〉 is an eigenvector of H. Hence,

(εC − 1)|2〉 = β|1〉 (β ∈ C).

On the other hand,

0 = (εC + 1)(εC − 1)|2〉 = (εC + 1)β|1〉 = 2β|1〉
which implies C|2〉 = ε|2〉. Iterating the above procedure again and again, we conclude that
C = ε1.
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In order to prove the converse implication, let equation (3) hold, with
∑

n dn � 2; then
the following involutory (non-trivial) operator:

Cσ =
∑

n

dn∑
a=1

pn,a∑
i=1

σa
n |ψn, a, i〉〈φn, a, i| (12)

(where σ = {
σa

n

}
denotes an arbitrary sequence of signs σa

n = ± which depend only on the n
and a indices) commutes with H. �

Finally, the following useful property of involutory operators holds.

Proposition 2. Every linear, involutory operator C is similar to a Hermitian operator.

Proof. Let M be a linear (in general, non-unitary) invertible transformation which reduces C
to its Jordan canonical form J

M−1CM = J = D + N

where D is a (real, involutory) diagonal matrix, N is an upper triangular matrix and [D,N ] = 0.
Then,

J 2 = D2 + 2ND + N2 = 1

hence

N(2D + N) = 0.

Now, observe that 2D + N is invertible, since det(2D + N) = det 2D �= 0; then, N = 0
and the thesis follows at once. �

3. The generalized C, TP and CTP symmetries

In this section we will extend to the class of nondiagonalizable pseudo-Hermitian Hamiltonians
the concepts of generalized parity P, charge-conjugation C and time-reversal T operators that
have already proved to be very fruitful in the diagonalizable case.

At the moment we do not dwell upon the possible physical meaning of such operators,
which, however, has been clearly discussed in the literature (see in particular [12] where these
concepts have been successfully applied to describe Klein–Gordon fields). Our main goal is
to obtain, for any pseudo-Hermitian Hamiltonian, a set of linear and antilinear symmetries,
whose role will be enlightened in the following sections.

With reference to the same notation adopted above, let us use the subscript ‘0’ to denote
the real eigenvalues of H, and the subscripts ‘±’ to denote the complex eigenvalues with
positive or negative imaginary parts, respectively. Furthermore, we recall that for a pseudo-
Hermitian operator the geometric multiplicity and the Jordan dimensions of the complex
conjugate eigenvalues coincide (i.e., dn+ = dn− and pn+ = pn−) [10]. Then, H assumes the
following form:

H =
∑
n0

dn0∑
a=1

En0

pn0 ,a∑
i=1

∣∣ψn0 , a, i
〉〈
φn0 , a, i

∣∣ +

pn0 ,a−1∑
i=1

∣∣ψn0 , a, i
〉〈
φn0 , a, i + 1

∣∣
+

∑
n+,n−

dn+∑
a=1

 pn+ ,a∑
i=1

(
En+

∣∣ψn+ , a, i
〉〈
φn+, a, i

∣∣ + En−

∣∣ψn− , a, i
〉〈
φn− , a, i

∣∣)

+
pn+ ,a−1∑

i=1

(∣∣ψn+ , a, i
〉〈
φn+ , a, i + 1

∣∣ +
∣∣ψn− , a, i

〉〈
φn− , a, i + 1

∣∣) . (13)
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We can associate with H a family {Pσ } of operators defined as follows:

Pσ :=
∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

σa
n0

∣∣φn0 , a, pn0,a + 1 − i
〉〈
φn0 , a, i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+,a∑
i=1

σa
n+

(∣∣φn+ , a, pn+,a + 1 − i
〉〈
φn− , a, i

∣∣
+

∣∣φn− , a, pn+,a + 1 − i
〉〈
φn+ , a, i

∣∣) (14)

(where σ = {
σa

n

}
denotes an arbitrary sequence of signs σa

n = ± which depend only on the n
and a indices).

It is easy to verify that any Pσ is a Hermitian operator; furthermore H is a Pσ -pseudo-
Hermitian operator, that is it satisfies the relation

PσHP −1
σ = H †.

Observe that the generalized parity Pσ operator given in equation (14) generalizes from
various points of view the generalized parity operators introduced in [2, 4, 5]. Indeed, as
we said above, it is defined for a (possibly) nondiagonalizable pseudo-Hermitian operator H,
and it reduces to that introduced in [5] and to the inverse of [4] whenever a diagonalizable
Hamiltonian is taken into account.

Moreover, if the Hamiltonian H is Hermitian with non-degenerate spectrum, then the
generalized parity operator Pσ given in equation (14) satisfies the following properties: (i) Pσ

is linear and Hermitian; (ii) Pσ commutes with H; (iii) P 2
σ = 1; (iv) the nth eigenstate of H

is also an eigenstate of Pσ with eigenvalue (−1)n. Hence our generalized parity operator has
the same formal properties as the generalized parity operator introduced in [2].

Analogously, we can associate with H a family of generalized charge-conjugation
operators given by

Cσ :=
∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

σa
n0

∣∣ψn0 , a, i
〉〈
φn0 , a, i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+,a∑
i=1

σa
n+

(∣∣ψn+ , a, i
〉〈
φn+ , a, i

∣∣ +
∣∣ψn− , a, i

〉〈
φn− , a, i

∣∣) (15)

and a time-reversal operator T

T :=
∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

∣∣ψn0 , a, i
〉
K

〈
ψn0 , a, pn0,a + 1 − i

∣∣ +
∑
n+,n−

dn+∑
a=1

pn+,a∑
i=1

(∣∣ψn+ , a, i
〉

×K
〈
ψn+ , a, pn+,a + 1 − i

∣∣ +
∣∣ψn− , a, i

〉
K

〈
ψn− , a, pn−,a + 1 − i

∣∣) (16)

where K denotes the operation of the complex conjugation of numbers.
Comparing equations (12) and (15) one immediately sees that the latter is a particular

case of the former, hence Cσ is an involutory symmetry of H.
The antilinear operator T satisfies the following remarkable conditions:

T = T † and T H †T −1 = H.

Moreover T generalizes the time-reversal operator introduced in [4]; indeed, whenever H
is diagonalizable with a non-degenerate spectrum, the operator in equation (16) coincides with
the inverse of the generalized time-reversal operator introduced in [4]. Besides, whenever H
is Hermitian, the generalized time-reversal operator T defined in equation (16) satisfies the



4340 A Blasi et al

following properties: (i) T is antiunitary; (ii) T commutes with H; (iii) T 2 = 1; (iv) the T
symmetry is not spontaneously broken. Hence our generalized time-reversal operator has the
same formal properties as the generalized time-reversal operator introduced in [3].

By using Pσ , T and Cσ , two (families of) involutory antilinear symmetries T Pσ and
CσT Pσ ′ of H can be constructed

T Pσ =
∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

σa
n0

∣∣ψn0 , a, i
〉
K

〈
φn0 , a, i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+,a∑
i=1

σa
n+

(∣∣ψn+ , a, i
〉
K

〈
φn− , a, i

∣∣ +
∣∣ψn− , a, i

〉
K

〈
φn+ , a, i

∣∣) (17)

and

CσT Pσ ′ =
∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

σ ′a
n0

σa
n0

∣∣ψn0 , a, i
〉
K

〈
φn0 , a, i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+ ,a∑
i=1

σ ′a
n+

σa
n+

(∣∣ψn+ , a, i
〉
K

〈
φn− , a, i

∣∣ +
∣∣ψn− , a, i

〉
K

〈
φn+, a, i

∣∣). (18)

By a direct inspection from equations (13), (15), (17) and (18) one easily verifies that

[Cσ , T Pσ ′ ] = 0 (19)

[Cσ ,H ] = 0 (Cσ )2 = 1 (20)

[T Pσ ,H ] = 0 (T Pσ )2 = 1 (21)

[CσT Pσ ′ ,H ] = 0 (CσT Pσ ′)2 = 1. (22)

Note that if H admits a real spectrum, then its T Pσ and CσT Pσ ′ symmetries are not
spontaneously broken in the following sense:

T Pσ

∣∣ψn0 , a, i
〉 = σa

n0

∣∣ψn0 , a, i
〉

CσT Pσ ′
∣∣ψn0 , a, i

〉 = σ ′a
n0

σa
n0

|ψn0 , a, i〉.
Finally, we recall that the following theorem holds [11].

Theorem 1. Let H be an operator with a discrete spectrum. Then, there exists a definite
operator η such that H is η-pseudo-Hermitian if and only if H is diagonalizable with a real
spectrum.

According to such a theorem, for any diagonalizable operator H with a real spectrum,
such a positive definite operator can be built up by means of the vectors of the biorthonormal
basis associated with H. Now, it is worthwhile observing that such an operator coincides with
the product P+ of a suitable couple of generalized parity and charge-conjugation operators:

P+ = Pσ Cσ =
∑
n0

dn0∑
a=1

∣∣φn0 , a
〉〈
φn0 , a

∣∣ (23)

(note that the same (arbitrary) sequence of signs must be chosen both in Pσ and in Cσ ).
Let us conclude this section by some further remarks about the connection between the

pseudo-Hermiticity property and the time-reversal symmetry. It was already known [13, 14]
that for any diagonalizable Hamiltonian H an antilinear (involutory) operator exists which
commutes with H if and only if H is pseudo-Hermitian. This result has been recently
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generalized to the nondiagonalizable case [11], and the discussion above confirms it (see
in particular equation (21)). This allows one to conclude that any time-reversal invariant
(not necessarily diagonalizable) Hamiltonian must belong to the class of pseudo-Hermitian
Hamiltonians.

The converse does not hold in general. Indeed, one can prove that an antilinear involutory
symmetry is associated with any pseudo-Hermitian Hamiltonian, but in general one cannot
interpret it as the ‘physical’ time-reversal operator 	; for instance, in the case of fermionic
systems it is well known that

	2 = −1

and the above results do not ensure the existence of such a symmetry. In order to go more
deeply into the matter, we recall that the following theorem holds [11].

Theorem 2. Let H be a linear operator with a discrete spectrum. Then, the following
conditions are equivalent:

(i) an antilinear operator T exists such that [H,T] = 0, with T2 = −1;
(ii) H is pseudo-Hermitian and the Jordan blocks associated with any real eigenvalue occur

in pairs.

From this theorem it follows in particular that whenever a pseudo-Hermitian operator
H admits an antilinear symmetry T with T2 = −1, both the geometric and the algebraic
multiplicities of any real eigenvalue of H are even.

4. P-pseudo-Hermitian Hamiltonians and indefinite inner products

A very intriguing feature of the pseudo-Hermiticity property is the chance of slightly
generalizing the usual quantum mechanical description of a physical system, by adopting
a more general criterion for the representation of physical observables.

Indeed, as is well known, when one considers a η-pseudo-Hermitian operator H a new
(possibly, but not necessarily) indefinite inner product can be defined in the Hilbert space
H [15]:

〈〈ψ, φ〉〉η := 〈ψ |η|φ〉 (24)

with respect to which H is self-adjoint, in the sense that H ‡ := η−1H †η = H , hence
〈〈Hψ,φ〉〉η = 〈〈ψ,Hφ〉〉η.

Let us then consider the orthogonal projectors 
(±) mapping H on the spans of the
eigenvectors of η associated with its positive, or respectively negative, eigenvalues and observe
that, η being invertible, none of its eigenvalues vanishes. Hence, trivially,


(+) + 
(−) = 1

and

H = H(+) ⊕ H(−)

where H(±) ≡ 
(±)H. Moreover, it is easily seen that, for all vectors |χ±〉 ∈ H(±), the
real number ±〈〈χ±, χ±〉〉η is positive, and that H(±) are Hilbert spaces relative to the norms
‖χ±‖ = (±〈〈χ±, χ±〉〉η) 1

2 , so that the space H, endowed with the metric 〈〈·, ·〉〉η, is a Krein
space [16, 17].

The Krein construction is particularly suitable in order to describe physical systems
associated with pseudo-Hermitian Hamiltonians. Indeed, if the Hamiltonian operator H,
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which determines the time dependence of the state vector |ψ〉 according to the Schrodinger
equation

i
d

dt
|ψ〉 = H |ψ〉

is η-pseudo-Hermitian, the conservation of the normalization of the state vectors with time
still holds in a Krein space, where the new inner product is used [15].

More generally, it must be emphasized that none of the requirements for a proper quantum
mechanical interpretation is violated as long as pseudo-Hermitian Hamiltonians and, at the
same time, a new positive definite inner product are employed [18] (see also section 6 for some
concrete examples).

Now, if we perform a linear (not necessarily unitary) transformation of the coordinate
system in the Krein space H introduced above [19]:

|ψ̃〉 = S−1|ψ〉
we have to put

η̃ = S†ηS (25)

in order to keep the length of the vector in H constant; η̃ is said to be congruent to η. (In
particular, note that whenever η is a positive definite operator, for instance η ≡ P+ (see
equation (23)), a transformation exists such that P̃ + = 1. Hence, if we restrict H to be
diagonalizable with a real spectrum, we can conclude that pseudo-Hermiticity is equivalent to
Hermiticity [20].)

The observables such as A and their adjoints are then transformed according to

Ã = S−1AS Ã‡ = η̃−1Ã†̃η = S−1A‡S (26)

in order to make their expectation values invariant [19]:

〈A〉η = 〈ψ |ηA|ψ〉 = 〈ψ̃ |̃ηÃ|ψ̃〉.
Let us consider now a Pσ -pseudo-Hermitian operator H, where Pσ is given in

equation (14), and let us fix in H the (indefinite) inner product induced by Pσ .
Given any complete orthonormal basis F = {|un, a, i〉} (that we denote by the same labels

n, a, i used for the elements of E), let us suppose

S =
∑

n

dn∑
a=1

pn,a∑
i=1

|ψn, a, i〉〈un, a, i|
(

hence, S−1 =
∑

n

dn∑
a=1

pn,a∑
i=1

|un, a, i〉〈φn, a, i|
)

. (27)

Performing such a transformation one obtains, according to equation (26)

S−1HS =
∑
n0

dn0∑
a=1

En0

pn0 ,a∑
i=1

∣∣un0 , a, i
〉〈
un0 , a, i

∣∣ +

pn0 ,a−1∑
i=1

∣∣un0 , a, i
〉〈
un0 , a, i + 1

∣∣
+

∑
n+,n−

dn+∑
a=1

 pn+,a∑
i=1

(
E∗

n+

∣∣un+ , a, i
〉〈
un+, a, i

∣∣ + En+

∣∣un− , a, i
〉〈
un− , a, i

∣∣)

+
pn+ ,a−1∑

i=1

(∣∣un+ , a, i
〉〈
un+, a, i + 1

∣∣ +
∣∣un− , a, i

〉〈
un− , a, i + 1

∣∣) = H̃ (28)

and, trivially,

H̃ |un, a, 1〉 = En|un, a, 1〉
H̃ |un, a, i〉 = En|un, a, i〉 + |un, a, i − 1〉 i �= 1.

(29)
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Moreover, according to equation (25) the operator Pσ is transformed to the involutory,
Hermitian operator

P̃σ = P̃σ
† = S†PσS =

∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

σa
n0

∣∣un0 , a, pn0,a + 1 − i
〉〈
un0 , a, i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+ ,a∑
i=1

σa
n+

(∣∣un+ , a, pn+,a + 1 − i
〉〈
un− , a, i

∣∣
+

∣∣un− , a, pn−,a + 1 − i
〉〈
un+ , a, i

∣∣) (30)

while both Cσ and T Pσ are transformed according to (26), so that

C̃σ = C̃σ
† = S−1CσS =

∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

σa
n0

∣∣un0 , a, i
〉〈
un0 , a, i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+,a∑
i=1

σa
n+

(∣∣un+ , a, i
〉〈
un+ , a, i

∣∣ +
∣∣un− , a, i

〉〈
un− , a, i

∣∣) (31)

and

T̃ = T̃ † = S−1T S†−1 =
∑
n0

dn0∑
a=1

pn0 ,a∑
i=1

∣∣un0 , a, i
〉
K

〈
un0 , a, pn0,a + 1 − i

∣∣
+

∑
n+,n−

dn+∑
a=1

pn+ ,a∑
i=1

(∣∣un+ , a, i
〉
K

〈
un+ , a, pn+,a + 1 − i

∣∣
+

∣∣un− , a, i
〉
K

〈
un− , a, pn−,a + 1 − i

∣∣). (32)

By inspection of equations (30), (31) and (32) one immediately realizes that T̃ and,
obviously, C̃σ are involutory: C̃σ

2 = T̃ 2 = 1, and that T̃ H̃ †T̃ = H̃ . Moreover, all three of
C̃σ , P̃σ and T̃ mutually commute:

[P̃σ , T̃ ] = [P̃σ , C̃σ ′] = [C̃σ , T̃ ] = 0

so that

(T̃ P̃σ )2 = (C̃σ T̃ P̃σ ′)2 = 1.

Finally, let us observe that P̃σ is a canonical symmetry in H [16], which immediately
generates orthogonal canonical projectors


̃(±) = 1
2 (1 ± P̃σ )

and a canonical decomposition

H = 
̃(+)H ⊕ 
̃(−)H
defining a Krein space.

Remark. It is easily verified that TrP̃σ depends only on the number of simple Jordan
blocks Ja

(
En0

)
of odd dimension associated with the real eigenvalues appearing in the Jordan

canonical form of H̃ . Hence, by choosing a suitable sequence (that we denote again with σ )
so that alternate signs + and − are associated with such blocks, one easily sees that

TrP̃σ = 0 if the space is even dimensional

TrP̃σ = 1 if the space is odd dimensional.
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Moreover this choice of σ maximizes the number of arbitrary parameters of the most general
(real, symmetric) parity matrix in the sense of [21]. Henceforth we will usually refer to such
a σ , and will just denote the generalized parity and charge-conjugation operators by P and C
for the sake of simplicity.

5. Indefinite inner product spaces and symmetries of H

The arguments in the preceding section led us in a natural way to discuss the properties of
indefinite inner product spaces. In this section we go on to the symmetries of these spaces,
where the scalar product is defined as in equation (24); moreover, since equation (1) holds with
any Pσ in place of η, considering the peculiar properties of the generalized parity operators
(see, for instance, equations (21) and (22)), and remembering the remark at the end of the
preceding section, we will always put P instead of η in (24). Furthermore, we will investigate
the connections between these symmetries and the previously obtained involutory C, T P and
CT P symmetries of H.

The set S of the symmetries in indefinite metric spaces (that is the transformations
preserving the modulus of the indefinite scalar product) was investigated in [9], where a
generalized Wigner’s theorem was proved, and the following fourfold classification was
obtained:

(1) An operator U such that

〈ψ |U †PU |φ〉 = 〈ψ |P |φ〉 (33)

is called a P-unitary operator in the indefinite metric space.
(2) An operator V such that

〈ψ |V †PV |φ〉 = 〈φ|P |ψ〉 (34)

is called a P-antiunitary operator in the indefinite metric space.
(3) An operator U such that

〈ψ |U †PU |φ〉 = −〈ψ |P |φ〉 (35)

is called a P-pseudounitary operator in the indefinite metric space.
(4) An operator V such that

〈ψ |V †PV |φ〉 = −〈φ|P |ψ〉 (36)

is called a P-pseudoantiunitary operator in the indefinite metric space.

Further, we recall that the spectral properties of P-unitary operators were already
investigated in [8].

Let us then focus our attention on a relevant subset of SH ⊂ S, that is the set of all
the invertible P-unitary, P-antiunitary, P-pseudounitary and P-pseudoantiunitary operators S
which commute with H:

SH = {X ∈ S : [H,X] = 0}.
First of all, with regard to the P-unitary symmetries U of SH , we observe that all of them

can be explicitly obtained by considering the linear operators X belonging to the commutant of
H [22] and then imposing the constraints (33). By a simple calculation one easily recognizes
that the operator Cσ given in equation (15) is a P-unitary operator.

Let us now come to the P-antiunitary, P-pseudounitary and P-pseudoantiunitary symmetry
operators. We have already seen that an involutory metric P̃ can always be obtained by
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a suitable transformation S (see equations (27) and (25)), and this can be done without
spoiling the assumptions of the generalized Wigner theorem [9]. Hence, all the (P-unitary,)
P-antiunitary, P-pseudounitary and P-pseudoantiunitary symmetry operators (whenever they
exist) are in a one-to-one correspondence with the (P̃ -unitary,) P̃ -antiunitary, P̃ -pseudounitary
and P̃ -pseudoantiunitary symmetries, respectively.

Recalling the peculiar properties of the antilinear operators T̃ P̃ and C̃T̃ P̃ (namely, they
are Hermitian, involutory operators which commute with P̃ ), and coming back to the basis
E, in virtue of the above correspondence, the following proposition easily follows, which
paraphrases a similar statement in [9]:

Proposition 3. Any P-antiunitary symmetry operator V ∈ S can be written as follows:

V = (CT P )U = (T P )U ′

where U and U ′ represent P-unitary symmetries of H and CT P and T P are the involutory
operators given in equations (18) and (17), respectively.

In particular, taking into account equations (21) and (22), one can prove immediately
the following corollary, which allows us to obtain all the P-antiunitary elements of SH if the
P-unitary ones are known.

Corollary. Any P-antiunitary symmetry operator V ∈ SH can be written as follows:

V = (CT P )U = (T P )U ′

where U and U ′ represent P-unitary symmetries of H and CT P and T P are the involutory
operators given in equations (18) and (17), respectively.

As to P̃ -pseudounitary and P̃ -pseudoantiunitary operators, they may exist only in
indefinite metric spaces in which the eigenvalues +1 and −1 of the metric operator P̃ have the
same multiplicity [9] (i.e., TrP̃ = 0).

Hence, from now on we limit ourselves to considering even-dimensional spaces and we
choose in {Pσ } a P which is congruent to a traceless, involutory operator P̃ (see the remark in
section 4). Then, it is not difficult to see that any P-pseudounitary operator can be obtained by
multiplying the P-unitary ones by an involutory operator R (also called P-reflecting operator)
which satisfies the following condition:

R†PR = −P

and a similar statement holds for P-pseudoantiunitary operators.
In this connection, the following proposition provides a necessary and sufficient condition

for a P-pseudo-Hermitian Hamiltonian H to admit P-pseudounitary and P-pseudoantiunitary
symmetries.

Proposition 4. Let H be a P-pseudo-Hermitian operator with a discrete spectrum, where P is
congruent to a traceless, involutory operator. Then the following conditions are equivalent:

(i) the Jordan blocks associated with any real eigenvalue of H occur in pairs;

(ii) an involutory operator R exists such that [H,R] = 0 and R†PR = −P ;

(iii) an antilinear operator T exists such that [H,T] = 0 and T2 = −1.
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Proof. Let us prove the implication (i) ⇒ (ii).
Let condition (i) hold; then, we can write

H =
∑
n0

dn0
2∑

a=1

En0

pn0 ,a∑
i=1

(∣∣ψn0 , a, i
〉〈
φn0 , a, i

∣∣ +

∣∣∣∣ψn0 , a +
dn0

2
, i

〉 〈
φn0 , a +

dn0

2
, i

∣∣∣∣)

+

pn0 ,a−1∑
i=1

(∣∣ψn0 , a, i
〉〈
φn0 , a, i + 1

∣∣ +

∣∣∣∣ψn0 , a +
dn0

2
, i

〉 〈
φn0 , a +

dn0

2
, i + 1

∣∣∣∣)


+
∑
n+,n−

dn+∑
a=1

 pn+ ,a∑
i=1

(
En+

∣∣ψn+ , a, i
〉〈
φn+, a, i

∣∣ + En−

∣∣ψn− , a, i
〉〈
φn− , a, i

∣∣)

+
pn+ ,a−1∑

i=1

(∣∣ψn+ , a, i
〉〈
φn+, a, i + 1

∣∣ +
∣∣ψn− , a, i

〉〈
φn− , a, i + 1

∣∣) .

Choosing P in the following form:

P =
∑
n0

dn0
2∑

a=1

pn0 ,a∑
i=1

(∣∣φn0 , a, pn0,a + 1 − i
〉〈
φn0 , a, i

∣∣ −
∣∣∣∣φn0 , a +

dn0

2
, pn0,a + 1 − i

〉

×
〈
φn0 , a +

dn0

2
, i

∣∣∣∣) +
∑
n+,n−

dn+∑
a=1

pn+,a∑
i=1

σa
n+

(∣∣φn+ , a, pn+,a + 1 − i
〉〈
φn− , a, i

∣∣
+

∣∣φn− , a, pn+,a + 1 − i
〉〈
φn+, a, i

∣∣).
one easily obtains by inspection that the operator

R =
∑
n0

dn0
2∑

a=1

pn0 ,a∑
i=1

(∣∣ψn0 , a, i
〉 〈

φn0 , a +
dn0

2
, i

∣∣∣∣ +

∣∣∣∣ψn0 , a +
dn0

2
, i

〉 〈
φn0 , a, i

∣∣)

+
∑
n+,n−

dn+∑
a=1

pn+ ,a∑
i=1

(∣∣ψn+ , a, i
〉〈
φn+ , a, i

∣∣ − ∣∣ψn− , a, i
〉〈
φn− , a, i

∣∣) (37)

is involutory and satisfies the conditions R†PR = −P and [H,R] = 0.
(ii) ⇒ (i). Let us assume that condition (ii) holds; then moving from E to the orthonormal

basis F = {|un, a, i〉}, conditions (ii) become

[H̃ , R̃] = 0 and R̃†P̃ R̃ = −P̃ (38)

where H̃ and P̃ are given in equations (28) and (30), respectively, and R̃ = S−1RS.
With reference to the block-diagonal form of H̃ , we denote by En the vector space

associated with the eigenvalue En, i.e., the space spanned by the set of vectors {|un, a, i〉, a =
1, . . . , dn, i = 1, . . . , pn,a}. Then, we observe that, since [H̃ , R̃] = 0, the matrix elements of
R̃ between states belonging to two different spaces En and En′ are always zero [22], hence R̃

maps each En onto itself.
Now, let us consider a vector space En0 associated with a real eigenvalue En0 , and let us

pick out in it the subspace spanned by the set
{∣∣un0 , a, i

〉
, i = 1, . . . , pn0,a

}
, with a fixed a. One

immediately realizes that R̃
∣∣un0 , a, 1

〉
is again an eigenvector of H̃ , corresponding to the same

eigenvalue; furthermore, the vectors
{
R̃

∣∣un0 , a, i
〉
, i = 1, . . . , pn0,a

}
belong to En0 and they
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are easily seen to be linearly independent. Applying R̃ on the left-hand side in equation (29),
and using again [H̃ , R̃] = 0, one obtains also

H̃ R̃|un, a, i〉 = EnR̃|un, a, i〉 + R̃|un, a, i − 1〉 i �= 1.

We can conclude that the vectors
{
R̃

∣∣un0 , a, i
〉
, i = 1, . . . , pn0,a

}
actually span the subspace

associated with Ja′(En0), hence dim Ja(En0) = dim Ja′(En0), and the two blocks are identical.
Then, if for all values of the degeneracy label a it happens that a �= a′, condition (i)

follows at once.
In contrast, let us suppose ab absurdo that an a exists such that R̃ maps the subspace

spanned by
{∣∣un0 , a, i

〉
, i = 1, . . . , pn0,a

}
onto itself. In this case, since R̃

∣∣un0 , a, 1
〉

is an
eigenvector of H̃ and R̃2 = 1, it follows that:

R̃
∣∣un0 , a, 1

〉 = ε
∣∣un0 , a, 1

〉
with ε = ±1.

Then, by the same iterative procedure we used in the proof of proposition 1, we can prove that

R̃
∣∣un0 , a, i

〉 = ε
∣∣un0 , a, i

〉
i = 1, . . . , pn0,a. (39)

Taking now into account the condition R̃†P̃ R̃ = −P̃ , and going on to evaluate the
corresponding matrix elements, from equation (39) and its adjoint we obtain〈
un0 , a, j

∣∣R̃†P̃ R̃
∣∣un0 , a, i

〉 = 〈
un0 , a, j

∣∣εP̃ ε
∣∣un0 , a, i

〉 = 〈
un0 , a, j

∣∣P̃ ∣∣un0 , a, i
〉

= −〈un0 , a, j
∣∣P̃ ∣∣un0 , a, i

〉 = 0 for all i, j = 1, . . . , pn0,a,

which leads to a contradiction, since equation (30) implies
〈
un0 , a, pn0,a + 1 − i

∣∣P̃ ∣∣un0 , a, i
〉 =

σa
n0

�= 0, for all i = 1, . . . , pn0,a .
Hence the Jordan blocks associated with any real eigenvalue of H̃ must occur in pairs,

which in turn implies that the same happens for the Jordan blocks associated with any real
eigenvalue of H.

The equivalence (i) ⇔ (iii) was proved in [11]. We only recall that the P-pseudoantiunitary
operator T which commutes with H and satisfies the condition T2 = −1 is given by

T =
∑
n0

dn0
2∑

a=1

pn0 ,a∑
i=1

(∣∣ψn0 , a, i
〉
K

〈
φn0 , a +

dn0

2
, i

∣∣∣∣ −
∣∣∣∣ψn0 , a +

dn0

2
, i

〉
K

〈
φn0 , a, i

∣∣)

+
∑
n+,n−

dn+∑
a=1

pn0 ,a∑
i=1

(∣∣ψn+ , a, i
〉
K

〈
φn− , a, i

∣∣ − ∣∣ψn− , a, i
〉
K

〈
φn+, a, i

∣∣) (40)

hence, it is P-pseudoantiunitary and coincides with the product RT P . �

6. A physical example: the Mashhoon–Papini Hamiltonian

We finally apply the general formalism developed in the preceding sections to the following
pseudo-Hermitian Hamiltonian:

Heff =
(

E ir
−is E

)
(E, r, s ∈ R)

which arises in the Mashhoon–Papini model, where one introduces a (time-reversal violating)
spin-rotation coupling to explain the muon’s anomalous g factor [23].

Though it is elementary, this Hamiltonian, which has been extensively studied elsewhere
by some of the authors [11, 24], is quite fit to illustrate the above results.

Indeed, the eigenvalues of Heff are

E1,2 = E ± √
rs

and depending on the values of r, s three different cases can occur.
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6.1. Case of real, non-degenerate spectrum

Whenever rs �= 0,Heff is diagonalizable and the biorthonormal eigenbasis is given by

|ψ1〉 = 1√
2

(
iχ

1
2

1

)
|ψ2〉 = 1√

2

(−iχ
1
2

1

)
|φ1〉 = 1√

2

(
iχ− 1

2

1

)
|φ2〉 = 1√

2

(−iχ− 1
2

1

)
where we omit the useless labels a, i and put χ = r

s
. Moreover, if χ is positive, Heff admits a

non-degenerate real spectrum and a (traceless) generalized parity (see equation (14)) is given
by

P = |φ1〉〈φ1| − |φ2〉〈φ2| = χ− 1
2

(
0 −i
i 0

)
whereas the charge-conjugation and the time-reversal operators are

C = |ψ1〉〈φ1| − |ψ2〉〈φ2| = i

(
0 χ

1
2

−χ− 1
2 0

)

T = |ψ1〉K〈ψ1| + |ψ2〉K〈ψ2| =
(−χ 0

0 1

)
K.

Note that we have chosen the same sequence of signs both in P and C. Furthermore, we recall
that now T is not physically meaningful since we are dealing with a fermionic Hamiltonian.

By a direct calculation the P-unitary symmetries U of Heff can be obtained,

U = eiα|ψ1〉〈φ1| + eiβ |ψ2〉〈φ2| = 1

2

(
(eiα + eiβ) iχ

1
2 (eiα − eiβ)

−iχ− 1
2 (eiα − eiβ) (eiα + eiβ)

)
(41)

(α, β ∈ R), whereas the generators of the P-antiunitary symmetries of Heff are

T P = |ψ1〉K〈φ1| − |ψ2〉K〈φ2| = −i

(
0 χ

1
2

χ− 1
2 0

)
K

CT P = |ψ1〉K〈φ1| + |ψ2〉K〈φ2| =
(

1 0
0 −1

)
K.

We stress the fact that in this case no degeneracy of the real eigenvalues occurs, hence
Heff cannot admit P-pseudounitary symmetries (see proposition 4).

A positive definite metric can be easily computed (see equation (23))

P+ = PC =
(

χ−1 0
0 1

)
.

Observing that [P,C] = 0, P-unitarity and P+-unitarity coincide. In particular, the (non-
unitary) time evolution operator U(t) = e−iHt [24] is trivially P+-unitary, and indeed it has
the form (41) with −E1t in place of α and −E2t in place of β.

Remark. It is worthwhile stressing that in the case under consideration the eigenvalues of
U(t) are eiα and eiβ (see (41)), hence, they are unimodular. Now, it is well known that in
general the eigenvalues of a P-unitary operator either are unimodular or they occur in pairs
λ, 1

λ∗ [8, 17]; nevertheless, whenever a positive definite inner product can be introduced, one
could easily prove that only the first alternative can occur, by employing the same techniques
as in the textbooks but merely using the new inner product (24) in place of the usual one (see
also the discussion at the beginning of section 4).
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In a similar way, one can define a transition probability between the states |ω〉 and |ω′〉
by putting, in analogy with the ordinary quantum mechanical prescription

Pω→ω′(t) = ∣∣〈〈ω,U(t)ω′〉〉P+

∣∣2
.

For instance, assuming the initial condition |ψ(0)〉 = (
0
1

) ≡ |ψ−〉 and recalling that |ψ+〉 ≡ (
1
0

)
[23, 24], the spin-flip probability turns out to be

Pψ−→ψ+(t) = 1
2 (1 − cos 2

√
rst)

which fully agrees (without any approximation) with that proposed in [23] in order to interpret
the discrepancy between the experimental and the standard model values of the muon’s
anomalous g-factor. (We recall that some of the authors proposed elsewhere [24] a different
form for the above probability, with an ad hoc normalization factor in order to consider the
non-unitarity of U(t)).

6.2. Case of complex, non-degenerate spectrum

If χ is negative, Heff admits two complex-conjugate eigenvalues. In this case P and C are
uniquely defined (up to a global sign), and we have

P = |φ1〉〈φ2| + |φ2〉〈φ1| =
(

χ−1 0
0 1

)
C = |ψ1〉〈φ1| + |ψ2〉〈φ2| =

(
1 0
0 1

)
T = |ψ1〉K〈ψ1| + |ψ2〉K〈ψ2| =

(−χ 0
0 1

)
K.

Note that the charge-conjugation operator C becomes the identity (see equation (15); anyway,
an involutory, non-trivial symmetry exists, in the sense of proposition 1 and of equation (12),
and it coincides with the operator C in section 6.1).

The P-unitary symmetries of Heff are given by

U = u|ψ1〉〈φ1| +
1

u∗ |ψ2〉〈φ2| = 1

2u∗

(
(|u|2 + 1) iχ

1
2 (|u|2 − 1)

−iχ− 1
2 (|u|2 − 1) (|u|2 + 1)

)
where u ∈ C (see also the remark in section 6.1) and the generator of the P-antiunitary
symmetries of Heff is given by

T P = CT P = |ψ1〉K〈φ1| + |ψ2〉K〈φ2| =
(−1 0

0 1

)
K.

Moreover, in this case Heff also admits P-pseudounitary and P-pseudoantiunitary
symmetries. The P-reflecting operator assumes the form (see equation (37))

R = |ψ1〉〈φ1| − |ψ2〉〈φ2| =
(

0 −|χ | 1
2

−|χ |− 1
2 0

)
(by a simple calculation it is easy to verify that R†PR = −P ); finally, the P-pseudoantiunitary
operator T which commutes with Heff and satisfies the condition T2 = −1 is

T = |ψ1〉K〈φ2| − |ψ2〉K〈φ1| =
(

0 −|χ | 1
2

|χ |− 1
2 0

)
K.
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6.3. Case of real, degenerate spectrum

If an off-diagonal term in Heff is zero, the Hamiltonian is no longer diagonalizable. Let us
consider for instance s = 0:

Heff =
(

E ir
0 E

)
(E, r ∈ R).

Omitting now the useless labels n, a the biorthonormal basis associated with Heff is

|ψ,1〉 =
(

1
0

)
|ψ,2〉 = i

r

(
1

−1

)
|φ,1〉 =

(
1
1

)
|φ,2〉 = ir

(
0

−1

)
and the generalized parity, charge-conjugation and time-reversal operators, respectively, are

P = |φ,1〉〈φ,2| + |φ,2〉〈φ,1| = ir

(
0 1

−1 0

)
C = |ψ,1〉〈φ,1| + |ψ,2〉〈φ,2| =

(
1 0
0 1

)
and

T = |ψ,1〉K〈ψ,2| + |ψ,2〉K〈ψ,1| = i

r

(
2 −1

−1 0

)
K.

(Note that C ≡ 1, see proposition 1.)
The generator of the P-antiunitary symmetries of Heff is given by

T P =
(

1 2
0 −1

)
K.

while the form of the P-unitary symmetries of Heff is

U = eiα

(
1 p

0 1

)
α, p ∈ R.

7. Summary and conclusions

In the first part of this paper, we extended to the nondiagonalizable case the definitions of
generalized parity, charge-conjugation and time-reversal operators which can be associated
with any pseudo-Hermitian Hamiltonian H, and wrote them explicitly in terms of the elements
of the biorthonormal eigenbasis of H.

The generalized operators given above, and in particular T P and CT P , play a fundamental
role in a seemingly very different context. Indeed, we considered in section 4 all the symmetries
of the Krein space that one can associate with a P-pseudo-Hermitian Hamiltonian H. They
include P-antiunitary and (possibly) P-pseudounitary and P-pseudoantiunitary symmetries,
besides the P-unitary ones which have been already introduced [7, 8]. Then, in this connection,
we have proved that any P-pseudo-Hermitian Hamiltonian H admits P-antiunitary symmetries
and the generators T P and CT P of such symmetries are explicitly shown in equations (17)
and (18), respectively. Moreover, T P and CT P also generate all the P-antiunitary symmetries
of the space H.

Furthermore, if a P-reflecting operator R which commutes with H exists in the Krein
space, RT P generates all the P-pseudoantiunitary symmetries of the Hamiltonian. In
particular, proposition 4 provides a necessary and sufficient condition for the existence of
P-pseudounitary and P-pseudoantiunitary symmetries of H, and their generators R and RT P
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are given in equations (37) and (40), respectively. We stress here that RT P coincides with the
antilinear operator T which has the same properties as the time-reversal operator of fermionic
systems (see the discussion at the end of section 3), so that proposition 4 links in a perhaps
unexpected way the existence of a time-reversal symmetry of H and of a P-reflecting symmetry
of the Krein space. We remark, however, that proposition 4 does not apply whenever a positive
definite operator (e.g., P+) is chosen to define the new inner product (24).

Finally, some hints arose when these concepts were applied to the study of a physical
system (the Mashhoon–Papini Hamiltonian), in particular regarding the non-unitary evolution
of such a system.

We recall that Krein spaces have already been introduced in connection with pseudo-
Hermitian Hamiltonians, in the attempt to enlarge the framework of quantum mechanics, and
several interpretations of the vectors in H(−) have been proposed [1, 25]. We believe that this
paper fits very well in this attempt, in that it allows one to extend the above description to the
nondiagonalizable case, and to better understand the symmetry properties of such spaces.
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